Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata

نویسندگان

  • J. Zhang
  • Z. Liang
  • C. J. Han
  • Ye Wu
چکیده

This paper addresses the mechanical behavior of buried steel pipeline crossing subsidence strata. The investigation is based on numerical simulation of the nonlinear response of the pipeline-soil system through finite element method, considering large strain and displacement, inelastic material behavior of buried pipeline and the surrounding soil, as well as contact and friction on the pipeline-soil interface. Effects of key parameters on the mechanical behavior of buried pipeline were investigated, such as strata subsidence, diameter-thickness ratio, buried depth, internal pressure, friction coefficient and soil properties. The results show that the maximum strain appears on the outer transition subsidence section of the pipeline, and its cross section is concave shaped. With the increasing of strata subsidence and diameter-thickness ratio, the out of roundness, longitudinal strain and equivalent plastic strain increase gradually. With the buried depth increasing, the deflection, out of roundness and strain of the pipeline decrease. Internal pressure and friction coefficient have little effect on the deflection of buried pipeline. Out of roundness is reduced and the strain is increased gradually with the increasing of internal pressure. The physical properties of soil have a great influence on the mechanical properties of buried pipeline. The results from the present study can be used for the development of optimization design and preventive maintenance for buried steel pipelines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Investigation of Subsidence Effect on Buried Pipes in 3D Space

Buried pipes in the modern societies are considered as lifelines with a vital and essential role in the human life cycle. The performance of buried pipes is affected by many factors such as ground surface subsidence. In this paper, the effect of subsidence on pipelines is investigated using a three-dimensional numerical modeling developed in FLAC3D software for four types of most commonly used ...

متن کامل

Refinement to the Existing Analytical Methods of Analysis of Buried Pipelines due to Strike-Slip Faulting

Analytical methods presented to analyze the buried steel pipelines at strike-slip fault crossing use the Euler-Bernoulli beam theory. The cross-section of a buried pipe that is completely surrounded by soil cannot rotate freely and would not be remained perpendicular to the bending line after deformation. So it would be better to take into consideration a rotation between the cross-section and ...

متن کامل

Numerical and Empirical Investigation of Flow Separation Phenomenon around Semi-buried Pipelines due to Steady Currents

In this paper, in order to understand the flow-pipe interaction more clearly, the variations on flow pattern around semi-buried pipelines due to steady current have physically and numerically been investigated. In physical modeling section, the experiments have been carried out in a flume with 10 meter length, 0.3 meter width and 0.5 meter depth using a P.V.C pipe with 6.35 cm in diameter (for ...

متن کامل

ANOVELMONITORINGTECHNIQUE TO DEFINE CP CRITERIA FOR BURIED PIPELINES UNDER AC CORROSION CONDITION

Abstract: The risks of alternating current (AC) corrosion and overprotection increasingly demand new criteria forcathodically protected pipelines. To assess the risk of AC corrosion, new cathodic protection (CP) criteria have beenproposed based on DC/AC current densities measurements using coupons. The monitoring system designed for thisproject was based on the instant-off method, with steel co...

متن کامل

A SURVEY ON THE EFFECT OF SOIL COMPOSITION IN CORROSION BEHAVIOR OF CATHODICALLY PROTECTED BURIED PIPELINES UNDER AC INDUCED CONDITION

Abstract: Due to the expansion of high voltage Alternating Current (AC) power transmission lines and cathodically protected buried pipelines, it is becoming more and more difficult to construct them with enough safe distances between them. Thus, the pipelines are frequently exposed to induced AC interferences, which result in perturbation of Cathodic Protection (CP) due to AC corrosion. To s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015